Radioactive dating of moon rocks daniel craig dating 2016

6854933580_2c8b688306_z

Radiometric dating or radioactive dating is a technique used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed.The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay.The possible confounding effects of contamination of parent and daughter isotopes have to be considered, as do the effects of any loss or gain of such isotopes since the sample was created.It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of alteration.All ordinary matter is made up of combinations of chemical elements, each with its own atomic number, indicating the number of protons in the atomic nucleus.

By allowing the establishment of geological timescales, it provides a significant source of information about the ages of fossils and the deduced rates of evolutionary change.A particular isotope of a particular element is called a nuclide. That is, at some point in time, an atom of such a nuclide will undergo radioactive decay and spontaneously transform into a different nuclide.This transformation may be accomplished in a number of different ways, including alpha decay (emission of alpha particles) and beta decay (electron emission, positron emission, or electron capture).Another possibility is spontaneous fission into two or more nuclides.While the moment in time at which a particular nucleus decays is unpredictable, a collection of atoms of a radioactive nuclide decays exponentially at a rate described by a parameter known as the half-life, usually given in units of years when discussing dating techniques.Precision is enhanced if measurements are taken on multiple samples from different locations of the rock body.Alternatively, if several different minerals can be dated from the same sample and are assumed to be formed by the same event and were in equilibrium with the reservoir when they formed, they should form an isochron. In uranium–lead dating, the concordia diagram is used which also decreases the problem of nuclide loss.This predictability allows the relative abundances of related nuclides to be used as a clock to measure the time from the incorporation of the original nuclides into a material to the present.The basic equation of radiometric dating requires that neither the parent nuclide nor the daughter product can enter or leave the material after its formation.Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample.For example, the age of the Amitsoq gneisses from western Greenland was determined to be Accurate radiometric dating generally requires that the parent has a long enough half-life that it will be present in significant amounts at the time of measurement (except as described below under "Dating with short-lived extinct radionuclides"), the half-life of the parent is accurately known, and enough of the daughter product is produced to be accurately measured and distinguished from the initial amount of the daughter present in the material.

You must have an account to comment. Please register or login here!